tively flat in going from 135 to 180° may make a rigorous experimental determination of the geometry rather difficult. Our most stable calculated linear geometry (r = 1.083 Å) lies only 6.7 kcal/mol above the calculated equilibrium geometry. Nevertheless, on the basis of the present and previous^{4,5} *ab initio* calculations and the stated³ experimental uncertainties, we conclude that the CH₂ ground state is nonlinear with a geometry close to r = 1.096 Å, $\theta = 135.1^{\circ}$.

Since there is a great deal of current interest¹¹ in rapidly convergent CI expansions for molecules, Table III includes the seven most important spatial

Table III. The Seven Most Important Spatial Configurations in the Natural Orbital Expansion of ${}^{3}B_{1} CH_{2}$ at $\theta = 135^{\circ}$, r = 2.1 bohr^a

	Excitation	Spatial configuration	Coefficient
1.		1a1 ² 2a1 ² 1b2 ² 3a1 1b1	0.97914
2.	$2a_1 1b_2 \rightarrow 4a_1 2b_2$	$1a_1^2 2a_1 1b_2 3a_1 1b_1 4a_1 2b_2$	0.07269
3.	$2a_1 \rightarrow 4a_1$	1a ₁ ² 2a ₁ 1b ₂ ² 3a ₁ 1b ₁ 4a ₁	0.06393
4.	$1b_2^2 \rightarrow 2b_2^2$	$1a_1^2 2a_1^2 3a_1 1b_1 2b_2^2$	0.05686
5.	$1b_2^2 \rightarrow 4a_1^2$	$1a_1^2 2a_1^2 3a_1 1b_1 4a_1^2$	0.05246
6.	$2a_1^2 \rightarrow 4a_1^2$	$1a_1^2 1b_2^2 3a_1 1b_1 4a_1^2$	0.05027
7.	$1b_2 1b_1 \rightarrow 2b_2 2b_1$	$1a_1^2 2a_1^2 1b_2 3a_1 2b_2 2b_1$	0.04725

^a The coefficients incorporate the effects of all triplet spin eigenfunctions corresponding to the given orbital occupancy.

configurations in our natural orbital expansion near the minimum. We note that (1) all of these configurations involve only valence orbitals, (2) the SCF configuration dominates, (3) the second most important orbital occupancy involves six electrons outside closed shells, and (4) the single excitation $2a_1 \rightarrow 4a_1$ is very important.

(11) G. Das and A. C. Wahl, J. Chem. Phys., 44, 87 (1966).

(12) (a) Supported by a grant from the Chemical Applications Department of the UCC Computer Utility Network; (b) supported in part by the Petroleum Research Fund and the Research Corporation; to whom correspondence should be addressed.

Charles F. Bender¹²a

University Computing Company Palo Alto, California 94306

Henry F. Schaefer III^{12b}

Department of Chemistry, University of California Berkeley, California 94720 Received June 3, 1970

Vinyl Cations from Solvolysis

Sir:

In a recent communication Schubert and Barfknecht commented¹ regarding the solvolyses of vinyl halides which are proposed to occur by the SN1 mechanism (eq 1, route A) that "plausible under some, but not all, of the conditions used is hydrolysis via protonation of the alkene" (eq 1, route B). From studies on the hydrolysis of α -bromo-p-aminostyrene (1a) in aqueous buffers and perchloric acid they concluded that for 1a "the vinyl carbonium ion mechanism for this compound is definitely incorrect and that hydrolysis most probably occurs via acid catalyzed hydration."¹ For compounds having a *trans*-hydrogen atom at the double bond in respect to the leaving group X a third mechanism must be considered. In this mechanism,

(1) W. M. Schubert and G. W. Barfknecht, J. Amer. Chem. Soc., 92, 207 (1970).

especially under neutral or alkaline conditions, the corresponding acetylene beside route A can also be formed by a concerted elimination of HX (route C). In contrast an acetylene formation is not possible *via* route **B**. Table I shows predictions for reaction *via*

the electrophilic addition-elimination route (for both Markovnikov and anti-Markovnikov additions) or via the vinyl cation intermediate, for 20 different phenomena. The experimental data for the systems 1-12 so far investigated are given in the last two columns. It is clear that the data are compatible only with the SN1 route, except for reactions of 5 in HCOOH,² of 1a in acidic media, 1 and of 1b in unbuffered AcOH.³ In the latter three cases the addition-elimination route was already suggested and it is significant that the same substrates in nonacid media (i.e., 5 in MeOH- H_2O ,⁴ 1a in 80% EtOH,⁵ and 1b in buffered AcOH³) react (according to Table I) only via route A. As an example of a concerted elimination (route C) in nonacidic solvent compound 8 shall be given. Besides route C, route A can be made responsible for the acetylene formation; examples are 1c, 4, 5, 7; in the case of 9 the acetylene formation can only be explained through route A.

While 1a solvolyzes in acidic media via additionelimination,¹ extrapolation to pH of Schubert's k_{obsd} data¹ in water gives $k^{50^\circ} = 1.4 \ 10^{-7} \ sec^{-1}$ (and lower values at higher pH), by using Grob's data⁵ $k_1^{50^\circ} =$ $0.035 \ sec^{-1}$ in basic 80% ethanol. The difference of at least five orders of magnitude in rate is a real discrepancy, which at present is difficult to explain.⁶

- (3) See Table I, footnote aa.(4) See Table I, footnote u.
- (5) See Table I, footnote *p*.

⁽²⁾ See Table I, footnote oo.

⁽⁶⁾ This difference is even higher if account is taken of the difference in the two solvents. It was suggested by Professor W. M. Schubert (private communication) that this is due to formation of sufficient amount of unneutralized protons, so that Grob's data really reflect addition mechanism by these protons. On the other hand, Schubert and Barfknecht¹ did not consider the possibility of electrophilic acceleration of the solvolysis by protons, via protonation on the bromine, which should contribute to SN1 solvolysis even under acidic conditions.

Table I. Predicted and Observed Behavior in Vinylic Solvolysis

		Predicted for			
		Electrophilic	Solvolysis via		
	Phenomena	addition-elimination ^a	vinyl cations	Obsd	For
1.	Reactivity in aprotic, ROH,				
	a. With added base	No (or very slow) reaction	Reaction	Reaction in EtOH-H ₂ O, p^{-t} MeOH-H ₂ O, u^{-w} DME-H ₂ O x Me ₂ CO-H ₂ O y A _C OH ^t , $y, z, a^{a,bb}$	1, v, u 2, q, t, x-z, aa, ff 4 r 5 u 7 v, w Qbb
	b. No added base	No ^b or autocatalytic reaction	Reaction	Reaction in EtOH-H ₂ O,* DMF-H ₂ O,* CH ₂ Cl ₂ , ^{cc} CHCl ₃ , ^{cc} CH ₃ NO ₂ , ^{cc} dioxane, ^{cc} MeOH, ^{cc} Me ₂ CO, ^{cc} DMF, ^t Me ₂ CO-H ₂ O, ^{dd} AcOH ^{bb, ce}	2, t.x 3, cc., ee 5, " 9, bb 10 ^{dd}
2.	Reactivity in RCOOH	Department	Department	Departies in AcOU to as ((=)) UCOOUt ((Otzas (f-bb
	a. Containing RCOO	Autocatalytic reaction	Reaction	Reaction in AcOHaa	D aa D aa
3.	Solvent isotope effect	Autocutarytic reaction	Reaction	Reaction in Acom	2
	a. Alkyl-substituted alkenes	Small	Small or none	No or small effect	2, ^z 5 ^s
	b. Aryl-substituted alkenes	Appreciable	Small or none	Small effect	2 ^{hh,jj}
4. 5.	Effect of increasing acidity Effect of added base ⁷	Rate enhancement	No effect on the rate or rate enhancement ^{d, e}	rate enhancement	1a ⁱⁱ
	a. In nonacidic solvent	Rate retardation	No effect on the rate ^e	No effect on the rate	$1,^{p}2,^{q,t,x,y,ff}5,^{u}7,^{v,w}$
	b. In RCOOH	Rate retardation followed by base-independent reaction ^a	No effect on the rate [*]	No effect on the rate	2, t, z, aa, ff $4, r$ $5, s$
б.	Effect of Ag ⁺ ions	No catalysis ^a	Rate enhancement	Rate enhancement	2,1.4 6,kk 7,v.w 10dd
7.	Effect of increasing solvent polarity	Small rate retardation	Rate enhancement	Rate enhancement	$1, p, 2, q, y, ff, 3, ll.mm, 4, r, 5, s, 6, kk, 10^{dd}$
8.	Order of reaction in substrate	First ^a	First ^a	First	1-5, 7, p-z,aa,ee, ff, ii, jj, ll, nn.oo 10dd
9.	Autocatalysis in neutral media	Expected ⁿ	Not expected	Not found	
10.	Effect of electron-donating R_1	Large rate enhancement	Large rate enhancement	Large rate enhancement	$2, x, y, 3, x, 4, r, 5, y, 10^{aa}$
11. 	and/or R_3	Large rate ennancement*	Small rate changes	Small rate changes	2, q, x, y, au, j) 3, ii 4
12.	Effect of more electron attracting	Rate retardation	Rate enhancement	Rate enhancement	$2, q, x-z, gg$ $3^{ee, nn}$
12	Common ion offort	Not expected	Exportedi	Rate retardation	500 2 7 ag ([2]]
15.	Common for elect	Not expected	Expected	Obsu	2,2,00,00 300
14.	Capture of the intermediate by added anions	Possible	Possible ^k	Found	2a.t.y
15.	Concurrent <i>cis-trans</i> isomerization of the substrate	Possible ^k	Possible [*]	Found	2, ²⁴ 9 ^{bb}
16.	Stereochemistry of the solvolysis	Dependent on steric effects	Dependent on steric effects	1:1 cis:trans mixture Retention	2, ^t 9b ^{bb} 3nn
17.	Scrambling of the α and β carbons	Usually not expected	Expected for bridged ion	Found	3nn
18.	1.2 Shift when R ₂ and/or R ₃ are	Not expected	Possible	Found	3.nn 2.11 11pp
- • •	better electron donors than R_1				
19.	Products	$R_1C(OS) = CR_2R_3$	$R_1C(OS) = CR_2R_3$	Found	2, t.aa. ff 3, ll. mm 7, v. w 9bb
		$R_1COCHR_2R_3^m$	$R_1COCHR_2R_3^m$	Found	2, q.t.x, y.aa. ff 4, r 5, s, u 9bb
			$R_1C = CR_2^n$	Found	1c, ^{o,u} 4, ^r 5, ^{s,u} 7, ^{o,v,w} 9 ^{bb}
		$R_1C(OS)_2CHR_2R_3$		Not found	
		$R_1CH(OS)C(OS)R_2R_3$		Not found	
20.	Solvolysis in AcOD	Deuterium incorporation into the products	No D incorporation	No D incorporation	7,ªª 12 ^{pp}

i Although not necessarily observable. ⁴ Depending on the relative rates of protonation, initernal rotation, and product formation. ⁴ The steric effects determining the *cis-trans* ratios of the products are expected to be similar in the transition states of both routes. ^m For S = H. ^a For R_s = H. ^a A concerted elimination cannot be excluded. ^a C. A. Grob and G. Csch, *Helo. Chim. Acta*, **47**, 194 (1964). ^a Z. Rappoport and A. Gal, *J. Amer. Chem. Soc.*, **91**, 5246 (1969). ^a C. A. Grob and R. Spaar, *Tetrahedron Lett.*, 1439 (1969). ^a P. J. Stang and R. H. Summerville, *J. Amer. Chem. Soc.*, **91**, 5734 (1969). ^a P. E. Peterson and J. M. Indelicato, *ibid.*, **91**, 6194 (1969). ^a S. A. Sherrod and R. G. Bergman, *ibid.*, **91**, 2115 (1969). I Except for salt effects. a Addition by the solvent. A Especially for protonation on the α carbon provided that the ⁴⁶ Z. Rappoport and A. Gal, submitted for publication. ³⁶ D. R. Kelsey and R. G. Bergman, J. Amer. Chem. Soc., **92**, 228 (1970). ⁴⁶ G. Capozzi, G. Melloni, G. Modena, and on Lett., 4039 (1968). ⁴⁴ M. D. Schiavelli, S. C. Hixon, and H. W. Moran, J. Amer. Chem. Soc., **92**, 1082 (1970). ⁴⁶ G. Modena and U. Tonellato, Chem. Commun., in press. ⁴⁴ Z. Rappoport, Y. Kaspi, and Y. Apeloig, unpublished results. ⁴⁷ Ref. (1968). ¹¹ G. Modena, U. Tonellato, and F. Naso, *Chem. Commun.*, 1363 The actual direction of the change depends on the balance of the inductive and the conjugative effects. * M. Hanack and T. Bässler, ibid., 91, 2117 (1969). * L. L. Miller and D. A. Kaufman, ibid., 90, 7282 (1968). * Z. Rappoport and Y. Kaspi, ibid., 92, 3220 (1970). * W. M. Jones and D. D. Maness. on the concentrations ⁴ Rate enhancement is expected in the case of electrophilic assistance by the formed proton via protonation of the ⁴⁰ P. E. Peterson and J. M. Indelicato, J. Amer. Chem. Soc., 90 R. G. Berman, unpublished results ^b Dependent ^a Only cases of rate-determining addition are considered since in other situations differentiations between the two mechanisms are easily achieved by kinetics alone. 99 M. Hanack, T. E. Dueber, and P. J. Stang, ibid., 92, 3802 (1970). ena and U. Tonellato, *ibid*. 1676 (1968). ⁿⁿ G. Capozzi, G. Melloni, G. Modena, and U. Tonellato, *ibid*., 1520 (1969). A. Imhoff, R. H. Summerville, P. v. R. Schleyer, A. G. Martinez, M. Hanack, T. E. Dueber, and P. J. Stang, *ibid*., 92 ^{kk} S. J. Huang and M. V. Lessard, J. Amer. Chem. Soc., 90, 2432 (1968). 1/ Z. Rappoport and Y. Apeloig, submitted for publication. ^{az} Z. Rappoport and Y. Apeloig, Israel J. Chem., 7, 34p (1969). leaving group. " Except for solvation or special interactions with the leaving group." Fixcept for salt $+CR_3R_3$ ion is more stable than the $+CR_1X$ ion. If the absence of neighboring group participation. ^e Becomes faster on increasing the acidity of the solvent. * Except for solvation or special interactions with the leaving group. ii Z. Rappoport and A. Gal, unpublished results. erence 1. ¹¹ Z. Kappopur and N. Tonellato, *ibid*. 1676 (1968). (1968). ^{mm} G. Modena and U. Tonellato, *ibid*. 1676 (1968). *ibid.*, **91**, 4314 (1969). ^{as} Z. Rappoport and M. Piscitelli, *Tetrahedron Lett.*, 4039 (1968). and the nature of the alkene.

An additional argument for route A is the rearrangement of vinyl derivatives in solvolysis reactions. It is difficult to explain the products without suggesting vinyl cation intermediates. Examples are the solvolysis of *t*-butylvinyl triflate,⁷ and 1-adamantylvinyl triflate,⁸ leading predominantly to rearranged products, and the solvolysis of 9° and $11.^{\circ}$ Additional examples for rearrangement reactions involving vinyl cations will be published in the near future.¹⁰

In general for the solvolysis of vinyl derivatives it can be suggested that the relationship between routes A, B, and C is as follows.

Route B. The rate is strongly dependent upon the H^+ concentration of the reaction media.

Route A. The rate should be almost independent of the solvent pH.

Route C should exhibit increasing rates with increasing concentration on base, but is limited to certain structural features of reactant as mentioned above.

From the available data it is difficult to predict the relative values of the corresponding k's, but it can be concluded that several mechanisms may operate, and the addition-elimination route may be important for some compounds in acidic media, but the SN1 route operates under nonacidic conditions. The dependence of the solvolysis rate upon H⁺ concentration may be in future work an easy way to distinguish between the possible mechanisms.

Acknowledgments. We are indebted to Drs. W. M. Schubert, University of Washington, G. Modena, University of Padova, and R. G. Bergman, California Institute of Technology, Pasadena, Calif., for communicating their unpublished results.

(7) A. G. Martinez, M. Hanack, R. H. Summerville, P. v. R. Schleyer, and P. J. Stang, Angew. Chem., 82, 323 (1970).

(8) See Table I, footnote pp.(9) See Table I, footnote bb.

(10) A. Ghenciulescu, N. Youssif, and M. Hanack, unpublished results.

Zvi Rappoport

Department of Organic Chemistry The Hebrew University, Jerusalem, Israel

Tilmann Bässler, Michael Hanack

Chemisches Institut der Universitat Tübingen 74 Tübingen, Germany Received February 13, 1970

Molecular Dynamics of π - π Complex Formation by Deuterium Quadrupolar Relaxation¹

Sir:

 $\pi-\pi$ complexes between an electron donor molecule (D) and an acceptor molecule (A) (EDA complexes)² have been extensively studied in recent years.³⁻⁶ How-

(1) Nuclear Relaxation and Molecular Properties. IV; part III: Ch. Brevard, J. P. Kintzinger, and J. M. Lehn, *Chem. Commun.*, 1193 (1969).

(2) No assumption about the electronic structure of these complexes is made here. See R. S. Mulliken and W. B. Person, J. Amer. Chem. Soc., 91, 3409 (1969); M. J. S. Dewar and C. C. Thomson, Jr., Tetrahedron, Suppl., 7, 97 (1966).

hedron, Suppl., 7, 97 (1966).
(3) G. Briegleb, "Elektronen Donator-Acceptor Komplexe," Springer-Verlag, Berlin, 1961.

(4) L. J. Andrews and R. M. Keefer, "Molecular Complexes in Organic Chemistry," Holden-Day, San Francisco, Calif., 1964.
(5) N. J. Rose, "Molecular Complexes," Pergamon Press, New York,

(5) N. J. Rose, "Molecular Complexes," Pergamon Press, New York, N. Y., 1967.

(6) R. Foster, "Organic Charge Transfer Complexes," Academic Press, London, 1969.